Multibody dynamics
Multibody simulation of an industrial robot in contact with a deformable environment with friction

Diederik Verscheure

Katholieke Universiteit Leuven, Department of Mechanical Engineering, PMA Division

26 april 2006
Overview

1. Introduction
 - Considered case

2. Robot model
 - Multibody model
 - Model of the controllers

3. Environment model
 - Environment model
 - Friction model

4. Integration and results
 - No contact
 - Contact
 - Integration of the differential equations
 - Considered cases
 - Some results

5. Conclusions

Multibody dynamics
Outline

1. Introduction
 - Considered case

2. Robot model
 - Multibody model
 - Model of the controllers

3. Environment model
 - Environment model
 - Friction model

4. Integration and results
 - No contact
 - Contact
 - Integration of the differential equations
 - Considered cases
 - Some results

5. Conclusions

Multibody dynamics
Considered case

- a 6-DOF robot in contact with a deformable environment with friction.
Purpose:

- gain a better understanding of the dynamic behaviour.
- compare how these results differ from experimental results (e.g. due to flexibility in the transmissions).
- for future (simulation) purposes: torque control, active end-effector, ...
Outline

1 Introduction
 • Considered case

2 Robot model
 • Multibody model
 • Model of the controllers

3 Environment model
 • Environment model
 • Friction model

4 Integration and results
 • No contact
 • Contact
 • Integration of the differential equations
 • Considered cases
 • Some results

5 Conclusions

Multibody dynamics
Multibody model: first three axes

Model of the first three axes:

- inverse dynamic model:
 \[\tau = M(q) \cdot \ddot{q} + C(q, \dot{q}) \cdot \dot{q} + G(q) + F(\dot{q}) \]
 - \(\tau \) the joint torques, \(q \) the joint angles, . . .
 - \(M(q) \) the joint angle dependent inertia matrix
 - \(C(q, \dot{q}) \) the centrifugal and Coriolis forces
 - \(G(q) \) gravitation
 - \(F(\dot{q}) \) friction

- can be rewritten as \(\tau = \phi(q, \dot{q}, \ddot{q}) \cdot \theta \), a model that is linear in the parameters \(\theta \) (inertia, friction, . . .).

- inverse model generated with Robotran
- based on cooperation of PMA/UCL
Multibody model: first three axes
Multibody model: axes four to six

Model of axes four to six:
- simple inverse dynamic model: $\tau = M \cdot \ddot{q} + F(\dot{q})$,
 - constant inertia matrix M
 - $F(\dot{q})$ accounts for friction
- parameter identification by C. Ganseman (1998)
Controllers

- velocity controllers: lag controllers \((K_l \cdot \frac{\tau_1 \cdot s + 1}{\tau_2 \cdot s + 1})\)
- position controllers: proportional controllers
- yields differential equations: \(\ddot{\tau} = S(q_d, \dot{q}_d, \ddot{q}_d, q, \dot{q}, \ddot{q}, \tau)\)
 - \(q_d\) is the input or "driving variable"

Multibody dynamics
Outline

1 Introduction
 - Considered case

2 Robot model
 - Multibody model
 - Model of the controllers

3 Environment model
 - Environment model
 - Friction model

4 Integration and results
 - No contact
 - Contact
 - Integration of the differential equations
 - Considered cases
 - Some results

5 Conclusions
General contact dynamics model

- how to choose the "contact dynamics" parameters?
- requires small stepsize (stability issues if stepsize too large or not enough damping).
- quite easy to integrate and switch between contact and no contact.
Less general contact dynamics model

- How to choose the "contact dynamics" parameters?
- Requires special attention when switching between contact and no contact (infinite contact force, calculate correct initial conditions).
Simplified contact dynamics model

- Environment is flat and located at $x = x_0 = 1\ m$
- Nonlinear environment model: $F_e = K_e \cdot \delta^n + \lambda_e \cdot \dot{\delta} \cdot \delta^n$
 - δ is the environment deformation
 - No force jumps (as opposed to linear model $c \cdot \dot{\delta}$)
 - For $n = 3/2$ and $\dot{\delta} = 0$ Hertz model
- No arbitrarily chosen parameters.
- Easier to switch between contact and no contact.
- Straightforward to integrate.
Coulomb and viscous friction

\[F_f = F_n \cdot (\mu \cdot \text{sign}(v_{r,ee}) + c \cdot v_{r,ee}). \]

- \(v_{r,ee} \) is the end-effector velocity projected onto a plane parallel to the environment surface.
- the \(\text{sign}(v_{r,ee}) \) is replaced by the sigmoid function \(\sigma \) so as to avoid switching.
Outline

1. Introduction
 - Considered case

2. Robot model
 - Multibody model
 - Model of the controllers

3. Environment model
 - Environment model
 - Friction model

4. Integration and results
 - No contact
 - Contact
 - Integration of the differential equations
 - Considered cases
 - Some results

5. Conclusions
In the case of no contact:

\[M(q) \cdot \ddot{q} = \tau - C(q, \dot{q}) \cdot \dot{q} - G(q) - F(\dot{q}) \]

\[0 = K_e \cdot \delta^n + \lambda_e \cdot \dot{\delta} \cdot \delta^n \]

\[\dot{\tau} = S(q_d, \dot{q}_d, \ddot{q}_d, q, \dot{q}, \ddot{q}, \tau) \]

(6 x 2) + 1 + 6 equations

\(\delta \) and \(q \) evolve independently.

switching conditions: if \(x_{ee} - x_0 > \delta \), then contact is made.
In the case of contact:

\[M(q) \ddot{q} = \tau - C(q, \dot{q}) \dot{q} - G(q) - F(\dot{q}) - J_{ee,e}^T(q) \cdot F_e - J_{ee,f}^T(q) \cdot F_f \]

\[F_e = K_e \cdot \delta^n + \lambda_e \cdot \dot{\delta} \cdot \delta^n \]

\[F_f = F_n \cdot (\mu \cdot \sigma(\nu_{r,ee}) + c \cdot \nu_{r,ee}) \]

\[\dot{\tau} = S(q_d, \dot{q}_d, \ddot{q}_d, q, \dot{q}, \ddot{q}, \tau) \]

\((6 \times 2) + 1 + 2 + 6 \) equations

\(\delta = x_{ee} - x_0, \dot{\delta} = \dot{x}_{ee} \)

\(\nu_{r,ee} = (\dot{y}_{ee}, \dot{z}_{ee}) \)

\[J_{ee,e}^T = \begin{bmatrix} \frac{\partial x_{ee}}{\partial q_1} & \frac{\partial x_{ee}}{\partial q_2} & \frac{\partial x_{ee}}{\partial q_3} & \frac{\partial x_{ee}}{\partial q_4} & \frac{\partial x_{ee}}{\partial q_5} & \frac{\partial x_{ee}}{\partial q_6} \end{bmatrix} \]

\[J_{ee,f}^T = \begin{bmatrix} \frac{\partial y_{ee}}{\partial q_1} & \frac{\partial y_{ee}}{\partial q_2} & \frac{\partial y_{ee}}{\partial q_3} & \frac{\partial y_{ee}}{\partial q_4} & \frac{\partial y_{ee}}{\partial q_5} & \frac{\partial y_{ee}}{\partial q_6} \\
\frac{\partial z_{ee}}{\partial q_1} & \frac{\partial z_{ee}}{\partial q_2} & \frac{\partial z_{ee}}{\partial q_3} & \frac{\partial z_{ee}}{\partial q_4} & \frac{\partial z_{ee}}{\partial q_5} & \frac{\partial z_{ee}}{\partial q_6} \end{bmatrix} \]

switching conditions: if \(F_e < 0 \), then contact is broken
Radau5

- Radau5 solver of Hairer (2002)
- expects constant mass matrix
- can handle DAE’s

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\dot{q} \\
\ddot{q} \\
\dot{\tau} \\
\ddot{\delta} \\
\dot{\delta} \\
\ddot{\delta}
\end{bmatrix}
=
\begin{bmatrix}
\dot{q} \\
\ddot{q} \\
M(q) \cdot \ddot{q} - \tau - D(q, \dot{q}) \\
S(q_d, \dot{q}_d, \ddot{q}_d, q, \dot{q}, \ddot{q}, \tau) \\
K_e \cdot \delta^n + \lambda_e \cdot \dot{\delta} \cdot \delta^n
\end{bmatrix}
\]

- if contact is made, last two dimensions are dropped and environment and friction force are taken into account in $D(q)$.
- implicit form for environment model.

Multibody dynamics
Switching

- switching conditions are monitored.
- when a switch is detected, the time interval containing the switch is recalculated with a small time-step and the switching point is determined more accurately.
- there are better ways to handle this.
Explicit or implicit Euler

- alternatively, explicit or implicit Euler may be used.

\[\ddot{q} = M^{-1}(q) \cdot (\tau + D(q, \dot{q})) \]
\[\dot{\tau} = S(q_d, \dot{q}_d, \ddot{q}_d, q, \dot{q}, \ddot{q}, \tau) \]

- if contact is made, environment and friction force are taken into account in \(D(q) \).
- this was used to verify the correctness of the Radau5 approach
Considered cases

- case 1: q_d trajectory data from a writing task.
- case 2: q_d trajectory data from a writing task augmented with an excitation signal.
- purpose: to estimate:
 - the environment parameters: stiffness, damping, ...
 - friction parameters.
 - orientation and position of the environment.
from the measured forces on the end-effector and the (discretised) end-effector position.
Some results

Force deformation hysteresis loop

![Graph showing environment deformation versus environment force](image-url)

- **Multibody dynamics**
- **Environment deformation versus environment force**

Notes:
- Force vs. Position graph indicating hysteresis in the system.
Some results

Joint angles

- Joint angle for axis 1
 - q_1
 - $q_{d,1}$

- Joint angle for axis 2
 - q_2
 - $q_{d,2}$

- Joint angle for axis 3
 - q_3
 - $q_{d,3}$

- Joint angle for axis 4
 - q_4
 - $q_{d,4}$

- Joint angle for axis 5
 - q_5
 - $q_{d,5}$

- Joint angle for axis 6
 - q_6
 - $q_{d,6}$
Estimated environment parameters

Estimated exponent

- true exponent
- estimated exponent (no persistent excitation)
- 99% uncertainty bounds

Multibody dynamics
Outline

1. Introduction
 - Considered case
2. Robot model
 - Multibody model
 - Model of the controllers
3. Environment model
 - Environment model
 - Friction model
4. Integration and results
 - No contact
 - Contact
 - Integration of the differential equations
 - Considered cases
 - Some results
5. Conclusions

Multibody dynamics
Conclusions

- minimal coordinates approach was the most elegant approach for this case.
- working with constraints (at acceleration level) requires symbolic tools.
- quite complex models can be handled through a systematic approach.
- switching between models involves careful thought: easier with minimal coordinates, quite tedious when using constraints.
- persistent excitation allows for better estimation.
Questions

Thank you for your attention!

Questions?
Joint torques

Multibody dynamics
Force deformation hysteresis loop

Environment deformation - force hysteresis loop

Multibody dynamics
Loss of contact

Environment deformation and force

- end-effector penetration
- environment deformation

Environment force

Multibody dynamics
Estimated environment parameters

Estimated stiffness coefficient

- True stiffness coefficient
- Estimated stiffness coefficient (no persistent excitation)
- 99% uncertainty bounds

Multibody dynamics
Estimated environment parameters

Estimated damping coefficient

true damping coefficient
estimated damping coefficient (no persistent excitation)
99% uncertainty bounds

Multibody dynamics
Estimated environment parameters

Estimated x-component

- true x-component
- estimated x-component (no persistent excitation)
- 99% uncertainty bounds

Position (m)

0 0.5 1

0 1 2 3 4 5 6 (time (s))

Multibody dynamics
Estimated environment parameters

Multibody dynamics
Estimated environment parameters

Estimated z-component

- true z-component
- estimated z-component (no persistent excitation)
- 99% uncertainty bounds

Estimated z-component

- true z-component
- estimated z-component (persistent excitation)
- 99% uncertainty bounds

Multibody dynamics

to Dynamic Trajectory Compensation.