Parallel machine scheduling problem with single server

Abdelhak EL IDRISSI (Ph.D Student at UPHF France & EMI Morocco)

Thesis supervisor:
Pr. Mohammed BENBRAHIM (MOAD6, MASI laboratory, EMI, Morocco)
Pr. David DUVIVIER (LAMIH UMR CNRS 8201, UPHF, France)
Dr. Rachid BENMANSOUR (SI2M laboratory, INSEA, Morocco)

Problem and objective:

<table>
<thead>
<tr>
<th>M3</th>
<th>M2</th>
<th>M1</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions:

- Jobs are available at time zero.
- Preemption is not allowed.
- During the setup operation, both the machine and the server are occupied.
- The processing of each operation starts immediately after the end of setup.
- Setup operations are independent of the sequence and machines.

Some applications:

Network computing
Logistic
Production

Mathematical formulation:

\[\min C_{\text{max}} \]
\[\text{s.t.} \]
\[C_{\text{max}} \geq C_i \]
\[\sum_{k=1}^{m} x_{ik} = 1 \]
\[C_i = S_{i+n} + p_{i+n} + p_i \]
\[C_j \leq S_{j+n} + B(3 - x_{jk} - x_{jk} - z_{ij}) \]
\[\forall (i,j) \in N^2, i < j, \forall k \in M \]
\[C_j \leq S_{j+n} + B(2 - x_{jk} - x_{jk} + z_{ij}) \]
\[\forall (i,j) \in N^2, i < j, \forall k \in M \]
\[S_{i+n} + p_{i+n} \leq S_{j+n} + B(1 - z_{ij}, i+j) \]
\[\forall (i,j) \in N^2, i < j \]
\[S_{i+n} + p_{i+n} \leq S_{j+n} + B(z_{i+n}, j+n) \]
\[x_{ik} \in \{0,1\} \]
\[z_{ij} \in \{0,1\} \]
\[S_{i+n} \geq 0 \]

Proposition 1:

\[LB_1 = \frac{1}{m} \sum_{i=1}^{m} (p_i + s_i) \]

is a lower bound for the problem of P, S||C_{\text{max}}.

Main results:

- New mathematical formulations.
- Several lower/upper bounds + mathematical formulations
- Valid inequalities + approximate solutions
- IMPROVED / EFFICIENT / OPTIMAL SOLUTIONS

References: