INTRODUCTION
The importance of the urban morphology as a field of academic research and practice began mainly in the second half of the 20th century characterising the urban space and its connections with relevant issues (energy consumption, etc.) [1].

• By 2050, it is estimated that more than 60% of the world’s population will live in cities [2].

• Rapid urbanisation and urban sprawl are arising increasing energy requirements for efficient energy management strategy [3].

• O’Sullivan [4] mentions that prior to ‘60s, the idea of ‘morphology’ in a city was a ‘utopia’ and concerned the cities of ‘Howard’ (1898) (Garden City), ‘Le Corbusier’ (1929) (Ville Radieuse) or ‘Wright’ (Broadacre city).

• Beyond this, at the early beginning of the 20th century, urban theoretical models advocated the structure of the new city that would ‘obliterate’ its ancient form.

URBAN MORPHOLOGY AND ENERGY DEMAND
One of the first in-depth studies to investigate urban structure/morphology and its implications for the energy supply and consumption was conducted by S. Owens (1986)

CONCLUSIONS
• Among the most interesting attributes to influence the building energy consumption is the: compactness and the building density
• Various studies argue that more compact urban forms would significantly reduce energy consumption in both building and transportation sector
• The urban structure is the combination of space; time and activities
• Urban morphology is a parameter that strongly affects the energy consumption related to geometry and other dimensions

REFERENCES