One-dimensional wrinkling of thin membranes

Physical experiments [3]

A film, initially flat, is laid on a substrate such as water and compressed horizontally at both edges. It first starts to wrinkle, taking a sinusoidal form, but, for larger compressions, seems to concentrate at the centre.

Steps leading to the limit problem \(\delta \to 0 \):
1. Boundedness of \(\{ u(\delta) \} \) for any \((u_0)_{\delta \to 0} \) minisizers:
2. Inequality \(\| u(\delta) \| \leq \| u \| \) for all \(\delta \approx 0 \):
3. The sequence \((u(\delta)/\sqrt{\delta}) \) is also bounded in \(H^1_0 \):
4. Let us call \(\alpha_1 \) and \(\beta_1 \) the two Lagrange multipliers appearing in the Euler-Lagrange equation (see (3)) by a good choice of “test functions” \(\delta \), we can deduce estimates on these constants, permitting us to divide this equation by \(\sqrt{\delta} \), giving the limit case (4).

The equation (5) admits nontrivial solutions only if \(\alpha < \sqrt{\delta} \), the characteristic polynomial then has two pairs of purely imaginary complex roots. For convenience reasons, let us denote their moduli by \(\mu \) and \(\nu \) with \(\mu > \nu \).

By successively imposing the boundary conditions on a general solution \(\nu \), we get the two equations in \(\mu \) and \(\nu \) for which a part of the solutions is drawn.

1D or 2D space of solutions for equation (5)?

\(2D \) space \((\mu, \nu) \) in intersection with \(\{ (\mu, \nu) \} \in \mathbb{N} \times \mathbb{N} \) with \(\mu + \nu \) even.

\(1D \) space \((\mu, \nu) \) in (only) one curve.

What about eigenvalues? We get \(\alpha = \sqrt{\delta}(\mu + \nu) \). Thus, for fixed \(K \), the lowest eigenvalue \(-\alpha \) is found for \((\mu, \nu) \) lying on the curve closest to the diagonal (depending on \(K \), it is curve n’1 or n’2).

Possible degeneracy of eigenvalues: e.g. for the first one, for all \(k \in \mathbb{N} \), \(K = \frac{\pi^2}{4}(k + 1)^2 \) will give a 2D first eigenspace.

Some properties on the “limit solutions”

- Form of the solutions: We have \(u(\delta) = \delta (\xi - \frac{1}{2}) \) with, in case 1D space,
 \[w(t) = A \left(\cos(\mu t) \cos(\pi \nu t) - \cos(\nu t) \cos(\pi \mu t) \right) \]
 \[w(t) = A \left(\sin(\mu t) \sin(\nu t) - \sin(\nu t) \sin(\mu t) \right) \]
 where \(A \) is determined (up to sign) by (6).
- In case of 2D space, \(w(t) \) can be any linear combination of two functions like \(\cos(\mu t) \) and \(\cos(\nu t) \).
- Symmetry: if \(\mu(\delta) \) is a solution of (5) then \(\mu(L - \delta) \) is also solution; it is \(\pm w(s) \) in case 1D-space and can be described from \(w(s) \) in case 2D-space.
- Parity of all solutions in case 1D-space: oddness on red curves, evenness on blue ones.
- Number of roots depending on \(\mu \) and \(\nu \): in case 1D-space,
 - At least \(n - 1 \) inner roots when being on the \(n \)-th curve.
 - Increases by 2 after a crossing for the curve going below. It seems that each newly created root comes from an edge.
 - All roots are simple. This behaviour is found (at least numerically) also for solutions living in the 2D spaces.

Future work

- Evolution of the “degeneracy points” (2D space) when \(\delta \) grows.
- Study of the equation as \(K \to 0 \) (related to the Euler-Bernoulli elastica problem).
- Continuation algorithm applied to elastica curves.
- Study of the equation for large values of \(K \).
- Variable coefficients in equation (5).

We assume that there is no variation other than those in the compression direction ⇒ one-dimensional parametrization. Minimization of the energy due to:
- folds (which is measured by its curvature);
- potential energy due to the displacement of the substrate underneath.
⇒ We are seeking for minima of the functional
\[E : X \to \mathbb{R} : u \to \frac{1}{2} \int_0^L |u'|^2 \, ds + \frac{1}{2} \int_0^L (y_\delta(s))^2 \cos u(s) \, ds \]
where \(y_\delta(s) = \int_0^s \sin u(t) \, dt \) is a constant relative to the substrate and \(X \) describes the space of admissible functions:
\[X = \{ u \in H^1_0(0, L) ; \mathbb{R} \mid \int_0^L \cos u(s) \, ds = L - \delta \text{ and } \int_0^L \sin u(s) \, ds = 0 \} \]

Going to the limit \(\delta \to 0 \):

Euler-Lagrange equation of the problem:
\[\frac{d\mathcal{E}(\mu, \nu)}{d\delta} \cdot v + \alpha \int_0^L \sin u \cdot v + \beta \int_0^L \cos u \cdot v = 0 \]
As \(\delta \to 0 \), we obtain:
\[\int_0^L u''v'' + KL \int_0^L u' + \alpha \int_0^L u'v' + \beta \int_0^L v' = 0 \]
where \(\alpha = \lim \alpha_1 \) and \(\beta = \lim \beta_1 \sqrt{\delta} \) (up to subsequences).
\[\int_0^L w^2 = 2. \]

Numerical experiments: continuation algorithm applied to the “limit solutions”
Plot of the energies for the first two solutions for \(K = \frac{2 \pi^2}{L^2} \) with, respectively \(k = 0.01, 2, 3 \). Below are the curves obtained by continuation, followed by the resulting curves (x, y). (Length L is fixed to 10 and \(\delta \) varies from 0.05 to 3.5 by step 0.05.)

References